
Writing Execution Modules

Agenda
1. Writing an Salt execution module
2. Scenario #1: Bug in the cron module
3. Scenario #2: Writing a telegram module

Required knowledge and skills
Basic Python knowledge, you should be able
to read, write and understand a simple
Python script.

Basic Salt knowledge, you should know what a
Salt module is.

Modules are easy to write!
A Salt execution module is a Python module
placed in a directory called _modules/ at the
root of the Salt fileserver, e.g.:
/srv/salt/_modules/ .

The module’s default name is its basename,
e.g.: foo.py becomes foo , and can be
overwritten by using a __virtual__
function.

If the module has errors, the Salt minion will
skip the faulty module from being loaded!

Let’s verify that!
In the Salt source code all modules are stored
in: salt/modules/* .

Example: salt ‘*’ test.echo ‘foo’ .

test.echo

module function

Writing the foo module
We will write the foo module as a simple
module example in:
/srv/salt/_modules/foo.py .

When the foo.bar method is called, it will
return the argument just like test.echo
does.

Execute the foo module
The (updated) Salt modules needs to be
synced to all the minions using the following
command:

salt ‘*’ saltutil.sync_modules

The foo module is now available for
execution:

salt ‘*’ foo.bar ‘Hello SaltStack!’

Adding documentation to Salt modules
To add documentation you simply have to
add a Python docstring to the function.

When the sys.doc call is executed it will
return the docstring to the calling terminal.

https://docs.python.org/3/glossary.html#term-docstring

Scenario #1
 cron

Scenario #1: bug in the cron module
The identifier is not working in
 salt.states.cron.present when a special is
used.

In order to fix this issue, the
 salt.modules.cron.set_special will have to
allow an identifier to be set/used.

Let’s submit an issue on GitHub!

https://github.com/saltstack/salt/issues/44530

Scenario #1: submit issue on GitHub
When submitting an issue your are asked to
supply a description of the issue and some
debug information.

Scenario #1: contributing to SaltStack
Within a few hours I’ve received the following
response from @Ch3LL...

There is a great need for contributions to Salt
and patches are welcome!

The documentation is very extensive in this
area.

https://github.com/saltstack/salt/issues/44530#issuecomment-344399066
https://docs.saltstack.com/en/latest/topics/development/contributing.html

Scenario #1: submit the Pull Request
You can ‘overwrite’ any module by placing a
module with the same name in _modules/ at
the root of the Salt fileserver.

Instead I’ve used the documentation to setup
a local development environment.

https://docs.saltstack.com/en/latest/topics/development/contributing.html

Scenario #1: use the bugfix before it’s accepted
You can ‘overwrite’ any module/state by
placing a module or state with the same
name in _modules/ and _states/ at the
root of the Salt fileserver.

Scenario #1: the bugfix is accepted

Scenario #2
 telegram

Scenario #2: the school assignment
Assignment: develop a web application
where clients can order game servers that can
automatically be provisioned.

Solution: write a web application using the
Django framework and use salt-cloud and the
salt-api to create and delete servers at
DigitalOcean. Keep the ‘maintainers’ updated
via Telegram (ChatOps).

Scenario #2: send a message using Python
Telegram allows any user to create a new bot
by talking to the @BotFather, when
requesting a bot you will receive a new token.

Each Telegram chat has a unique chat ID.

Using the Telegram Bot API you can send a
message to an existing chat using a simple
HTTP POST request.

Scenario #2: writing the telegram module
Import the required library requests , for
making the HTTP requests.

The module will be called telegram , because
the __virtualname__ is set to telegram .

Only import the telegram module if the
required libraries are installed using the
__virtual__() function.

Scenario #2: telegram.post_message function
Within the Telegram module we will write the
post_message() function.

This function will be called when the user
executes:

salt ‘*’ telegram.post_message \

message=’Helo Telegram’ \

chat_id=’<REDACTED>’ token=’<REDACTED>’

Scenario #2: writing the telegram returner
A new returner can be placed in
 _returners/ , the returner is called when
running:

salt ‘*’ test.ping --return telegram

You can reuse code from other parts of
SaltStack. In the case we are calling the
telegram.post_message function.

Scenario #2: example of the telegram module
Example of the Telegram module and
returner.

Scenario #2: telegram in SaltStack!
The telegram module and returner are now
part of SaltStack, so you can use it to!

The documentation is automatically
generated from the Python docstrings.

Contact
Roald Nefs: info@roaldnefs.com

Source: https://xkcd.com/1810/

mailto:info@roaldnefs.com
https://xkcd.com/1810/

